Correntropy Based Matrix Completion

نویسندگان

  • Yuning Yang
  • Yunlong Feng
  • Johan A. K. Suykens
چکیده

This paper studies the matrix completion problems when the entries are contaminated by non-Gaussian noise or outliers. The proposed approach employs a nonconvex loss function induced by the maximum correntropy criterion. With the help of this loss function, we develop a rank constrained, as well as a nuclear norm regularized model, which is resistant to non-Gaussian noise and outliers. However, its non-convexity also leads to certain difficulties. To tackle this problem, we use the simple iterative soft and hard thresholding strategies. We show that when extending to the general affine rank minimization problems, under proper conditions, certain recoverability results can be obtained for the proposed algorithms. Numerical experiments indicate the improved performance of our proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Regularized Correntropy Framework for Robust Pattern Recognition

This letter proposes a new multiple linear regression model using regularized correntropy for robust pattern recognition. First, we motivate the use of correntropy to improve the robustness of the classical mean square error (MSE) criterion that is sensitive to outliers. Then an l regularization scheme is imposed on the correntropy to learn robust and sparse representations. Based on the half-q...

متن کامل

Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are l2 distance or KullbackLeibler (KL) divergence. However, nonlinear cases are not properly handled when we use these error measures. As a consequence, alternative measures based on nonlinear kernels,...

متن کامل

Convex regularized recursive maximum correntropy algorithm

In this brief, a robust and sparse recursive adaptive filtering algorithm, called convex regularized recursive maximum correntropy (CR-RMC), is derived by adding a general convex regularization penalty term to the maximum correntropy criterion (MCC). An approximate expression for automatically selecting the regularization parameter is also introduced. Simulation results show that the CR-RMC can...

متن کامل

Graph Matrix Completion in Presence of Outliers

Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...

متن کامل

Marine Animal Classification with Correntropy Loss Based Multi-view Learning

To analyze marine animals behavior, seasonal distribution and abundance, digital imagery can be acquired by visual or Lidar camera. Depending on the quantity and properties of acquired imagery, the animals are characterized as either features (shape, color, texture, etc.), or dissimilarity matrices derived from different shape analysis methods (shape context, internal distance shape context, et...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2018